Skip to main content
Log in

Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: Application to voltammetric glucose sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors demonstrate efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 μA·mM−1·cm−2 (obtained from cathodic peak current at a voltage of −0.45 V vs. Ag/AgCl), a 3 μM detection limit (at signal/noise = 3), and a wide linear range (0.01–7 mM). The hybrid nanostructure has a heterogeneous electron transfer rate constant (ks) of 2.9 s−1. The high electrochemical activity is attributed to the synergistic effect of a large active surface and an enhanced electron transfer efficiency due to covalent amide linkage.

Schematic of the procedure utilized for the fabrication of an electrochemical biosensor based on gold nanorods (AuNRs) modified with a reduced graphene oxide (rGO)/glucose oxidase (GOx) conjugate. The enzyme electrode was employed to the determination of glucose by differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Q, Gu S-X, Jin L, Y-e Z, Yang Z, Wang W, Hu X (2014) Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens Actuators B: Chem 190:562–569. https://doi.org/10.1016/j.snb.2013.09.049

    Article  CAS  Google Scholar 

  2. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131–136. https://doi.org/10.1016/j.bios.2012.11.040

    Article  CAS  Google Scholar 

  3. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee Y-K, Jaffa AA (2014) Recent Advances in Application of Biosensors in Tissue Engineering. Biomed res int 2014 (Article ID 307519):1–18 doi:https://doi.org/10.1155/2014/307519

  4. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Cheng W, Yin W, Wang X, Xu J-B (2016) ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Sci Rep 6:32327. https://doi.org/10.1038/srep32327

    Article  CAS  Google Scholar 

  5. Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315. https://doi.org/10.1016/j.bios.2012.08.045

    Article  CAS  Google Scholar 

  6. Ramulu T, Venu R, Sinha B, Lim B, Jeon S, Yoon S, Kim C (2013) Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron 40(1):258–264. https://doi.org/10.1016/j.bios.2012.07.034

    Article  CAS  Google Scholar 

  7. Pandey P, Singh S, Arya SK, Sharma A, Datta M, Malhotra BD (2008) Gold nanoparticle-polyaniline composite films for glucose sensing. J Nanosci Nanotechnol 8(6):3158–3163. https://doi.org/10.1166/jnn.2008.349

    Article  CAS  Google Scholar 

  8. García-Carmona L, González MC, Escarpa A (2017) Vertically-Oriented and Shape-Tailored Electrocatalytic Metal Nanowire Arrays for Enzyme-Free Galactosemia Rapid Diagnosis. Chem Eur J 23(38):9048–9053. https://doi.org/10.1002/chem.201701213

    Article  Google Scholar 

  9. García-Carmona L, Moreno-Guzmán M, Martín A, Martínez SB, Fernández-Martínez AB, González MC, Lucio-Cazaña J, Escarpa A (2017) Aligned copper nanowires as a cut-and-paste exclusive electrochemical transducer for free-enzyme highly selective quantification of intracellular hydrogen peroxide in cisplatin-treated cells. Biosens Bioelectron 96:146–151. https://doi.org/10.1016/j.bios.2017.04.048

    Article  Google Scholar 

  10. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42(12):5425–5438. https://doi.org/10.1039/C3CS35518G

    Article  CAS  Google Scholar 

  11. Aravind SSJ, Baby TT, Arockiadoss T, Rakhi RB, Ramaprabhu S (2011) A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films 519(16):5667–5672. https://doi.org/10.1016/j.tsf.2011.03.032

    Article  CAS  Google Scholar 

  12. Vijayaraj K, Hong SW, Jin S-H, Chang S-C, Park D-S (2016) Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal Methods 8(38):6974–6981. https://doi.org/10.1039/C6AY02032A

    Article  CAS  Google Scholar 

  13. Luong JH, Glennon JD, Gedanken A, Vashist SK (2017) Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchim Acta 184(2):369–388. https://doi.org/10.1007/s00604-016-2049-3

    Article  CAS  Google Scholar 

  14. Wang L, Yu J, Zhang Y, Yang H, Miao L, Song Y (2017) Simple and Large-Scale Strategy to Prepare Flexible Graphene Tape Electrode. ACS Appl Mater Interfaces 9(10):9089–9095. https://doi.org/10.1021/acsami.6b14624

    Article  CAS  Google Scholar 

  15. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  16. Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens Actuators B: Chem 251:462–471. https://doi.org/10.1016/j.snb.2017.05.062

    Article  CAS  Google Scholar 

  17. Unnikrishnan B, Palanisamy S, Chen S-M (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39(1):70–75. https://doi.org/10.1016/j.bios.2012.06.045

    Article  CAS  Google Scholar 

  18. Qian D, Li W, Chen F, Huang Y, Bao N, Gu H, Yu C (2017) Voltammetric sensor for trichloroacetic acid using a glassy carbon electrode modified with Au@ Ag nanorods and hemoglobin. Microchim Acta 184(7):1977–1985. https://doi.org/10.1007/s00604-017-2175-6

    Article  CAS  Google Scholar 

  19. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965. https://doi.org/10.1016/j.trac.2010.05.011

    Article  CAS  Google Scholar 

  20. Zhang Y, Pan C (2011) TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 46(8):2622–2626. https://doi.org/10.1007/s10853-010-5116-x

    Article  CAS  Google Scholar 

  21. Aunkor M, Mahbubul I, Saidur R, Metselaar H (2016) The green reduction of graphene oxide. RSC Adv 6(33):27807–27828. https://doi.org/10.1039/C6RA03189G

    Article  CAS  Google Scholar 

  22. Zhang J, Yu X, Guo W, Qiu J, Mou X, Li A, Liu H (2016) Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor. Nano 8(17):9382–9389. https://doi.org/10.1039/C6NR01360K

    CAS  Google Scholar 

  23. de Jesus CG, Lima D, dos Santos V, Wohnrath K, Pessôa CA (2013) Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer-by-layer films of silsesquioxane polyelectrolyte. Sens Actuators B: Chem 186:44–51. https://doi.org/10.1016/j.snb.2013.05.063

    Article  Google Scholar 

  24. Sehat AA, Khodadadi AA, Shemirani F, Mortazavi Y (2015) Fast immobilization of glucose oxidase on graphene oxide for highly sensitive glucose biosensor fabrication. Int J Electrochem Sci 10(20145):272–286

    Google Scholar 

  25. Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332(1):75–83. https://doi.org/10.1016/j.ab.2004.05.057

    Article  CAS  Google Scholar 

  26. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  27. Shi Y, Li X, Ye M, Hu C, Shao H, Qu L (2015) An imperata cylindrical flowers-shaped porous graphene microelectrode for direct electrochemistry of glucose oxidase. J Electrochem Soc 162(7):B138–B144. https://doi.org/10.1149/2.0251507jes

    Article  CAS  Google Scholar 

  28. Rabti A, Argoubi W, Raouafi N (2016) Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 183(3):1227–1233. https://doi.org/10.1007/s00604-016-1753-3

    Article  CAS  Google Scholar 

  29. Xu J, Sheng Q, Shen Y, Zheng J (2017) Enhanced direct electron transfer of glucose oxidase based on gold nanoprism and its application in biosensing. Colloids Surf A Physicochem Eng Asp 529:113–118. https://doi.org/10.1016/j.colsurfa.2017.05.049

    Article  CAS  Google Scholar 

  30. Devasenathipathy R, Mani V, Chen S-M, Huang S-T, Huang T-T, Lin C-M, Hwa K-Y, Chen T-Y, Chen B-J (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol 78:40–45. https://doi.org/10.1016/j.enzmictec.2015.06.006

    Article  CAS  Google Scholar 

  31. Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133. https://doi.org/10.1016/j.bios.2014.06.023

    Article  CAS  Google Scholar 

  32. Kumar-Krishnan S, Hernandez-Rangel A, Pal U, Ceballos-Sanchez O, Flores-Ruiz FJ, Prokhorov E, Arias de Fuentes O, Esparza R, Meyyappan M (2016) Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B 4(15):2553–2560. https://doi.org/10.1039/C6TB00051G

    Article  CAS  Google Scholar 

  33. Cao X, Ye Y, Li Y, Xu X, Yu J, Liu S (2013) Self-assembled glucose oxidase/graphene/gold ternary nanocomposites for direct electrochemistry and electrocatalysis. J Electroanal Chem 697:10–14. https://doi.org/10.1016/j.jelechem.2013.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Program of Sharif University of Technology (No. G930305) and Iran National Science Foundation (INSF No. 95-S-48740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Simchi.

Ethics declarations

All utilized procedures were in accordance with relevant guidelines and regulations of the Sharif University of Technology. The work has been approved by the ethical committee and all the patients signed an informed consent form.

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary material

ESM 1

(PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri, M., Simchi, A. & Aashuri, H. Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: Application to voltammetric glucose sensing. Microchim Acta 185, 178 (2018). https://doi.org/10.1007/s00604-018-2722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2722-9

Keywords

Navigation